

IEC 61850 (IEC 61400-25) DLL Getting Started using SystemCORP Embedded Technology

Two Client and one Server Applications including IEC 61850 Model Basics

Simple Console Applications (Server and Client) .Net GUI Application (Client)

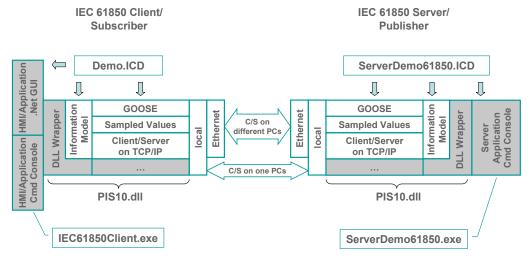
Source code of Applications is contained in the Starter Kit.

Documentation Control

Revision: Revision History:	1.00 1.00 Initial Release
Revision Date:	31 August 2010
Document Status:	RELEASE

TABLE OF CONTENTS

1 F	oreword and General Remarks	4
2 In	troduction	7
2.1	General	7
2.2	Abbreviations	8
3 T	o Run the DLL Example	9
3.1	ICD Definitions	
3.2	Installation Contents	
4 B	asics of IEC 61850 related to the Example	13
4.1	General remarks	13
4.2	The main parts of the standard	13
4.3	Status and ongoing work	13
4.4	Specification of signals for communication	14
5 In	troduction of Example	15
5.1	General remarks and basic definitions	15
5.2	The DK61 Board, the Approach of IEC 61850 and the Example	
	2.1 Architecture	
	 2.2 The process interface 2.3 The IEC 61850 information model for general I/Os 	16 17
	2.4 Browsing the information of an device	
	2.4 Browsing the information of an device	
	2.6 Binding of process values to standard information models	1)
	2.7 System Configuration Language (SCL)	
6 C	ommunication services	24
6.1	1.1 Setting up the serial communication	25
7 A	ppendix	26
7.1	Tools related to IEC 61850	
7.2	IEC 61850 Standards	26
7.3	Messages	28
7.4	GetDataValues for DIPS_GGIO1.Ind3	29
7.5	Standardized Logical Nodes	30


1 Foreword and General Remarks

This document is intended to provide the basic knowledge on IEC 61850 in order to run the DLL introductory examples. The examples provide basic information, communication and system configuration information.

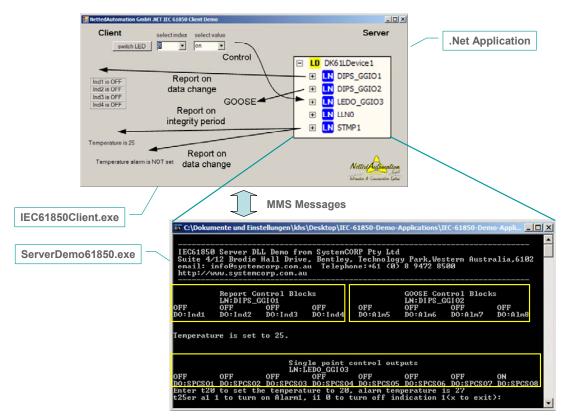
These DLL Client/Server demonstrations are based on an example used in the Development Kit (Beck IPC Development Kit DK61). By reading the corresponding documents, you will gain a more thorough understanding of the IEC 61850 standard and its application. The experience gained by the DLL application examples can be applied directly to the embedded solution using the Beck IPC Chips.

The current DLL application examples consist of four parts as shown in the figure below:

- The IEC 61850 DLL (PIS10.dll) provides Client/Server and Publisher/Subscriber
- The Server Console Application using the PIS10.dll (ServerDemo61860.exe) C source code is in the package to build your own server application. Note: The server must be started before you start the client.
- The Client Console Application using the PIS10.dll (61860Client.exe) C source code is in the package to build your own client application.
- The Client .Net Application using the PIS10.dll (61860Client.exe) C# source code is in the package to build your own client application.

The PIS10.dll provided in this evaluation package supports 50 data points (signals) to be modelled (e.g. with the ICD Designer) and implemented in the SCL file. The PIS10.dll runs for six (6) months after the first start.

The Information Model in the Server is build at boot-time of the PIS10.dll by reading the ServerDemo61850.icd file. The binding of the model to the Server Application is specified by Private Elements in the SCL file. Additional application data can be defined in the Server Application. The corresponding objects have to be added to the SCL file. There is no need for additional configuration than provided in the SCL file.

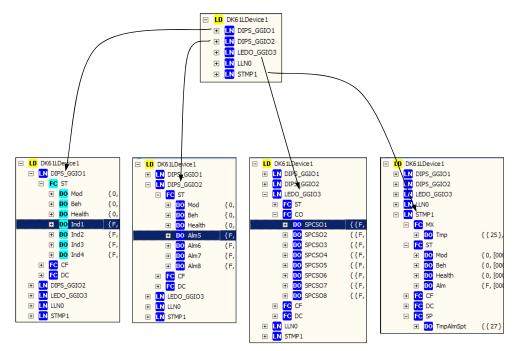

Two Client Applications are provided: one simple console and a C#/.Net Application. The two Clients are using the same PIS10.dll; the files are in two separate folders.

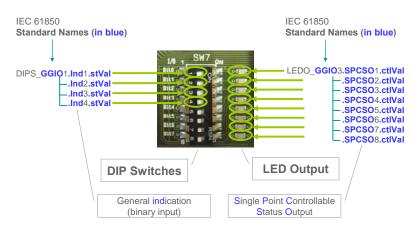
The Clients and the Server can run on one PC (localhost) or on different PCs. There are two different folder: one for the case of one PC and another for using two computers. The reason for having two folders is simply because of the SCL files that need different Addresses (IP and MAC) in the two cases. To trace messages with, e.g., Ethereal you need to use two PCs.

The following figure depicts the Server (bottom) and the .Net GUI (top). The .Net GUI shows the server model and the services. The Client and Server allows to enter new values.

The Console Client is shown in the following figure; the Serer is the same as above.

	🖘 C:\Dokumente und Einstellungen\khs\Eigene Dateien\Hersteller\SytemCorp_Perth\Client-Server-DLL 💶 🚬
IEC61850Client.exe	LEC61850 Client DLL Demo from SystemCORP Pty Ltd Suite 4/12 Brodie Hall Drive, Bentley, Technology Park,Western Australia,6102 enail: info@systemcorp.com.au Telephone:+61 (0) 8 9472 8500 http://www.systemcorp.com.au
	Report Control Blocks GOOSE Control Blocks LN:DIPS_GGI01 LN:DIPS_GGI02 OFF OFF OFF D0:Ind1 D0:Ind2 D0:Ind3 D0:Ind4
	Temperature is 25
	Single point control outputs LN:LEDO_GGI03
	DO:SPCSOL DO:SPCSO2 DO:SPCSO3 DO:SPCSO4 DO:SPCSO5 DO:SPCSO6 DO:SPCSO7 DO:SPCSO8 Enter m27 to set the alarm max temperature to 27. Enter (1 to 8) to control the LEDs (x to exit):
	MMS Messages
	🕫 C:\Dokumente und Einstellungen\khs\Desktop\IEC-61850-Demo-Applications\IEC-61850-Demo-Appli
ServerDemo61850.exe	IEC61850 Server DLL Demo from SystemCORP Pty Ltd Suite 4/12 Brodie Hall Drive, Bentley, Technology Park,Western Australia,6102 email: info8ystemcorp.com.au Telephone:+61 (0) 8 9472 8500 http://www.systemcorp.com.au
	Report Control Blocks LM:DIPS_GGIO1 OFF OFF OFF OFF D0:Ind1 D0:Ind2 D0:Ind3 D0:Ind4 D0:Alm5 D0:Alm6 D0:Alm7 D0:Alm8
	Temperature is set to 25.
	Single point control outputs LH:LEDO_GGI03 OFF OFF OFF OFF OFF OFF OFF D0:SPCS01 D0:SPCS02 D0:SPCS03 D0:SPCS04 D0:SPCS05 D0:SPCS06 D0:SPCS08 Enter t20 to set the temperature to 20, alarm temperature is 27 t25er all to turn on Alarm1, il 0 to turn off indication 1/x to exit):




The Information Model is sketched in the following two figures. The first shows the Logical Nodes and Data Objects implemented (LPHD is not implemented in order to keep the number of signal low):

- DIPS_GGIO1
- DIPS_GGIO2
- LEDO_GGIO3
- LLN0
- STMP1 (Supervision Temperature: <u>http://nettedautomation.com/qanda/iec61850/mappings/q-6.html</u>)

In case you need other LNs or Data Objects you can easily modify your application and add corresponding LNs and Data Objects and bind them by the SCL file – just follow the method you find in the example source code.

The GGIO LNs are used to easily understand the mapping between real data representing the hardware DIP switches and LEDs; the hardware DIP switches are taken from the DK61:

More details on modelling and binding can be found in further down in this document.

2 Introduction

2.1 General

The following description relates to the console applications.

The DLL code example can be used on one machine (localhost) or on two machines with a network between the two. The SCL files are already prepared for both cases.

NOTE	-This demonstration IEC61850 DLL is limited to:
•	A time limited of 6 months, and
٠	A maximum of 50 points.

The files for the localhost are in the folder "Debug_localhost"; the others are in "Debug_2Computers-on-Network". The only difference is in the IP-addresses of the "ClientDemo61850.ICD" and "ServerDemo61850.ICD".

For the localhost example you can right start the server and the client and use them. Always start the server first and then the client.

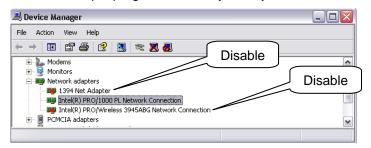
Here are the configured addresses (in the ICD files of "Debug_2Computers-on-Network") when you run the server and the client on different computers:

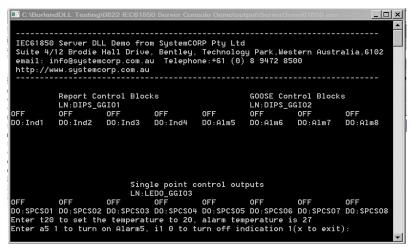
The IP-addresses of your computers must be configured manually to match with the addresses in the ICD Files as shown above! You may use different addresses than .100 and .111. Then you have to change these in the ICD files accordingly. The ICD files are interpreted when you start the .exe files for the server and the client.

2.2 Abbreviations

IED	Intelligent Electronic Device
GOOSE	Generic Object Oriented Substation Events
HMI	Human Machine Interface
ICD	IED Capability Description
IEC	International Electro-technical Commission
IED	Intelligent Electronic Device
INS	Integer Status
IP	Internet Protocol
LN	Logical Node
PIS	Protocol Integration Stack (SystemCorp)

SCL System Configuration Language


Additional information on IEC 61850 standards and related tools can be found in the Appendix.



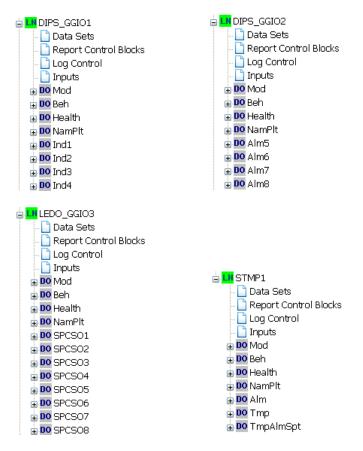
3 To Run the DLL Example

- 1. Run SystemCORP Embedded Technology IEC 61850 DLL Demo Installation.
- 2. For this example program, be sure you only have 1 wired network adapter:

- 3. Also, make sure the adapter is active, e.g. network cable is plug into a switch (this is not required when you run on localhost).
- 4. Start the Server (/Debug/ServerDemo61850.exe) and the CMD window appears:

5. Start the Client (/Debug/ClientDemo61850.exe) and the CMD window appears:

C:\Borla	ndDLL Testing	g\0821 IEC618	50 Client Con	sole Demo\ou	tput\ClientDen	1061850.exe	_ 🗆 ×
 IEC6185	0 Client D	LL Demo fr	om SystemC	ORP Pty Lt	 d		
				, Technolo			ralia,6102
		mcorp.com. corp.com.a		one:+61 (0) 8 9472 8	500	
			u 				
		ontrol Blo	cks			ntrol Block	ks
OFF	LN:DIPS_ OFF		OFF		LN:DIPS_	GGIUZ	
D0:Ind1		D0:Ind3		D0:A1m5	D0:A1m6	D0:A1m7	D0:A1m8
Temperat	uro is A						
remperat							
		c:-					
			LEDO_GGIO3	control ou	tputs		
						6 DO:SPCSO	7 D0:SPCS08
		he alarm m control th		ture to 27			
Encer (I	10 8) 10	CONTROL IN	e LEDS (X	to exit):			
							Date:



This is similar to BECK's IEC 61850 DK61 example found in their development kit. This example contains 4 Indicator and 4 Alarm inputs, 8 SPCSO outputs, and also a Temperature sensor example.

3.1 ICD Definitions

The example is defined by the ServerDemo61850.ICD and ClientDemo61850.ICD files:

6. In Server window type:

- a. i1 1 or i2 1 or i3 1 or i4 1 to turn indicator "ON"
- b. i1 0 or i2 0 or i3 0 or i4 0 to turn indicator "OFF"
- c. a1 1 or a2 1 or a3 1 or a4 1 to turn alarm "ON"
- d. a1 0 or a2 0 or a3 0 or a4 0 to turn alarm "OFF"
- e. For Temperature sensor example type t#.

e.g. t12 sets temperature to 12 degrees.

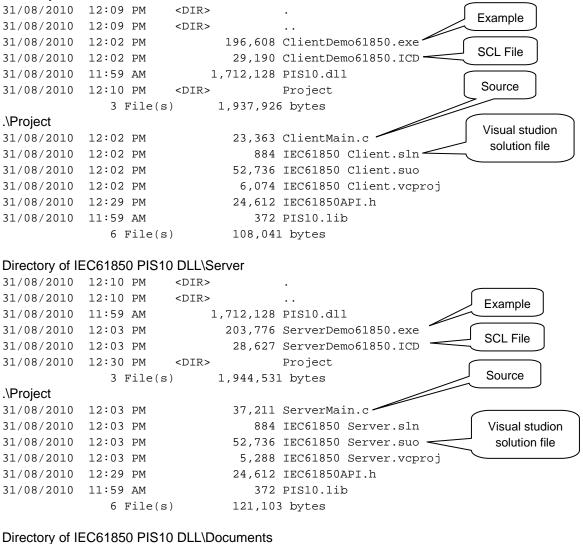
The temperature value will be reported in the Client window. If the temperature exceeds the value of 27 degrees (an alarm threshold defined in the ICD file) then a "Temperature alarm is set" is sent to the Client.

- 7. In Client window type 1 through 8 to toggle SPSCO1 through SPSCO8 "ON" and "OFF". This will be reflected in both the Server and Client windows.
- 8. In the Client, use m# to set the alarm temperature. e.g. m30 set the temperature alarm to 30 degrees.

Note – The client enables the control blocks of the server when it starts. A change in the STMP. Tmp will be reported immediately. The temperature alarm will also be sent when the temperature value is set to 27 (alarm limit Setpoint).

As described above, operating the simulated DIP switches in the Server CMD window will display the appropriate "ON" and "OFF" changes to the Client switches. Setting and entering temperature values in the Server window will also be reflected in the Client window. Enter 1 through 8 in the Client window simulating the turning LED's "ON" and check the Server window will reflect the same LED status.

Simulated DIP switches 1-4 Updated By a Report	
C: Do uments and Settingsloscar-nalWy Documents/IEC61850 DK61 ServerDLL/Debug/Serve IEC61851 Server DLL Demo from SystemCORP Pty Ltd Suite 4, 12 Brodie Hall Drive, Bentley, Technology Park, Western Australia,6102 enail: i folesystemcorp.com.au Telephone:+61 (0) 8 9472 8500 http://w v.systemcorp.con.au Report Control Blocks N:DIPS_GG101 LM:DIPS_GG102 OFF	File Action View Help + - + II II III III III IIII IIII ServerDemo61850.exe ServerDemo61850.ICD IEC 61850 Configuration 28 KB
D0:Ind1 1):Ind2 D0:Ind3 D0:Ind4 D0:Alm5 D0:Alm6 D0:Alm7 D0:Alm8 C: Documents and Settings\oscar-na\Wy Documents\UEC61850 DK61 ClientDLL\Debug\Client IEC61350 Client DLL Demo from SystemCORP Pty Ltd Suite 4/12 Brodie Hall Drive, Bentley, Technology Park,Western Australia,614 email info@systemcorp.com.au Telephone:+61 (0) 8 9472 8500 http://www.systemcorp.com.au Report Control Blocks GOOSE Control Blocks LN:DIPS_GGI02 OFF OFF OFF OFF OFF D0:Ind1 D0:Ind2 D0:Ind3 D0:Ind4 D0:Alm5 D0:Alm6 D0:Alm7 D0:Alm4 Temperature is 0 Single point c ntrol outputs LN:LED0_GGI03 D0:SPCS01 D0:SPCS02 D0:SPCS03 D0:SPCS05 D0:SPCS06 D0:SPCS07 D0:SPCS Enter (1 to 8) to control the LEDs (x to exit):_	ClientDemo61850.exe
Temperature from Server DIP switches 5-8 Updated By GOOSE	LED DO SPCSO's relected in both Cli- ent and Server



3.2 Installation Contents

Note – the directories shown below are those for the case of localhost. You will find two sets of directories: one for localhost and one for the case of running the server and client on different computers as described above.

Directory of IEC61850 PIS10 DLL\Client

29/04/2010	05:30 PM	984,100 IEC61850Products.pdf
29/04/2010	05:30 PM	477,092 IEC61850ProtocolAPIUserManual.pdf
31/08/2010	11:56 AM	1,292 SET Copyright & Disclaimer.txt
30/08/2010	03:31 PM	7,012 SystemCORP Embedded Technology
		copyright & disclaimer.pdf
31/08/2010	03:08 PM	Getting_Started_DLL_IEC61850.pdf (This document)
	5 File(s)	

4 Basics of IEC 61850 related to the Example

4.1 General remarks

The standard series IEC 61850 provides a uniform framework for the specification, exchange and configuration of information. It applies to the Process level (actuators, sensors of any type), level of Control and Protection and higher levels as Station level, e.g., in substations (HMI and remote control link).

The standard comprises:

- 1. General rules (project management, environmental and EMC requirements, etc.)
- 2. **Common and domain specific information** for functions and devices (measured values, status and switching information, etc.),
- 3. Information of and about primary devices (switches, transformers and instrument transformers) and
- 4. Information exchange for protection, monitoring, control, measurement and metering
- 5. A configuration language.

Interoperability between devices and between engineering (configuration) tools is the main goal of IEC 61850. It is intended to enable two or more IEDs (Intelligent Electronic Devices) from one or more suppliers to exchange information which is defined in the IEC 61850 standard and to unambiguously interpret and use the information in order to implement the functionality required by the application.

4.2 The main parts of the standard

The standard covers general requirements relating to substations, engineering, data models, communications solutions and conformity testing. The original scope (substations) has been extended to power utility automation. It may be used in any application domain with similar requirements.

The first 16 parts of the standard series have been issued as official IEC standards. It is a toolkit that can be used to design open automation systems. In addition to describing the information flow between functions of automation devices, IEC 61850 provides communications mechanisms between the functions. It leaves a significant amount of freedom to implement communications, so that manufacturers can adapt their functions and system platform to a variety of markets and user requirements.

Parts 1 to 4 contain the introduction and all of the general requirements.

Part 5 describes the basic requirements for substation automation functions.

The substation configuration language is defined in Part 6.

Based on Part 5, Parts 7-1, 7-2, 7-3, 7-4, 7-410, 7-420, and IEC 61400-25-2 contain communication definitions for a variety of functions (data models and communications services). Parts 8 and 9 define mappings of the definitions contained in Part 7 to real communications networks.

Part 10 defines the basics for conformance tests.

IEC 61850 standards are found in the Appendix 7.2 - IEC 61850 Standards.

4.3 Status and ongoing work

While the last sections of IEC 61850 were being published, work was already in progress on inclusion of applications outside of substations. Many of the world's major power utilities and manufacturers of automation systems are involved in the work to enhance the standards. All of the major manufacturers for electric power systems offer conforming products or are in the

process of developing them. Widespread use of IEC 61850 has begun in 2007. The introduction of IEC 61850 compliant products and widespread use are now well underway. The parties who are involved in implementation and use of the standard now have the task of using the experience that they have gained with IEC 61850 to contribute to the ongoing work at IEC TC 57. Many international companies (users and manufacturers) are members of the UCA International Users Group. This organization supports the introduction of IEC 61850 and continued development of the standard (www.ucaiug.org).

4.4 Specification of signals for communication

It was common practice in the past to specify signals in long lists which were drawn up for a particular manufacturer, user or project. IEC 61850 takes a different approach. The standard uses a designator (readable text), a data type (such as double point) and other descriptive information to define the signals. The data models are independent of the communication services which are used to access actual data values or the models themselves. The data models represent the information which can be exchanged with a device. They essentially describe the device interface. Data models provide new ways of interacting with intelligent devices. IEC 61850 defines the following four key aspects which are independent of each other and which build on one other:

Standardized information: for circuit breakers: units, measured values, control, metadata, etc. including a self-description (IEC 61850-7-4); standardized information is based on a general set of about 20 common data types (status, measured value, metering data (IEC 61850-7-3); some standardized information is specific to substations, and other information is more general. The definition of new information models, which reuse standardized information, is expressly supported.

Standardized services: for simple data access, reporting logging, querying, device control, etc. (IEC 61850-7-2). The standardized services can be used with standardized information (in 61850-7-4) or with any new or extended information models.

Standardized networks: suitable networks are selected for exchanging messages in the strict sense of the term. Standardized communication systems are used for the standardized services, standardized information and any other type of information (IEC 61850-8-1 and -9-2).

Standardized configuration: A complete, formal description is generated for the devices and the entire system. IEC 61850-6 defines an XML-based system description language (Substation Configuration Language, SCL), which is used to generate configuration files.

5 Introduction of Example

5.1 General remarks and basic definitions

The following example focuses on the signals to be described and exchanged with IEC 61850. IEC 61850 provides signal designations (names) for application information produced, exchanged and consumed by devices.

The communication services provide the exchange of values in real-time (GOOSE and Sampled Values, based on Layer 2 Multicast) and in a client-server relation based on TCP/IP and higher layer protocols.

The configuration language SCL describes all information of a system and the flow of the information between the devices of the system.

Device E Device D Device C **Device A Device B** Get... Operate "Open" Report "Open" **TCP/IP** based (event) Log "Open" Log Query Log GOOSE "Trip" (event) SMV Sc Layer 2 **Multicast** "Samples" (cyclic) request/listen to ... listen to ... information, send to ... System Configuration Language (SCL) - XML document

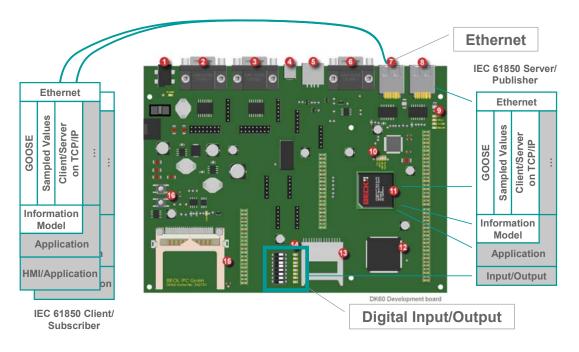
These basic features of IEC 61850 are depicted in the following figure:

Device B provides **information** (Status, 3-phase electrical Measurements, sensor information, Engineering and Configuration information, Nameplates, etc.) that can be retrieved (Get) by Device B. Device A may operate something in Device B (open a breaker, start a program, etc.) A change of the breaker position may cause a **report** of the new value to a specific Device; or the change may be **logged and queried** for retrieval later on. These services use a clientserver communication **based on TCP/IP**.

IEC 61850 provides **two special services for real-time communication** based on Layer 2 multicast services (on publisher – to – many subscribers). GOOSE allows the exchange of any information in **short reaction times** (less 5 ms). Sample Measured Values (SMV) are intended to exchange values **cyclically in a high frequency** (typical sample rate: 4.000 messages per second for special functions).

The **System Configuration Language** (SCL) describes the sources of the information, which services are to be used, who should listen to the information exchanged (information flow). Devices A, C, D and E are configured to listen to the red Multicast message sent by Device B. Devices could implement one or more of the following roles: Client, Server, Publisher, or Subscriber.

The version of the IEC 61850 in the DK61 for this description is V1.0. This version provides the roles Server, Publisher (GOOSE) and Subscriber (GOOSE).


The **example** introduces a Server that allows the access of information from DIP Switches and information for LEDs. The application between IEC 61850 and the Digital I/Os is implemented in "C".

5.2 The DK61 Board, the Approach of IEC 61850 and the Example

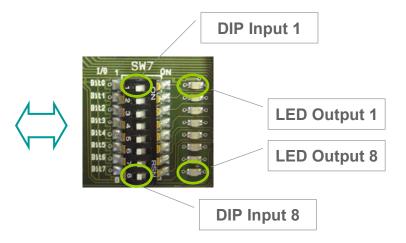
5.2.1 Architecture

The crucial aspects shown in the following figure (related to the example in this document) are:

- 1. The Ethernet connectivity on the top; the devices (the DK61 and two other documents shown to the left) are understood to be connected to one subnet.
- 2. The Digital Inputs and Outputs shown at the bottom.
- 3. The Inputs are implemented as 8 DIP Switches and the Output signals are implemented as 8 LEDs. The position of the DIP Switches can manually be changed. The positions (information) are intended to be communicated by IEC 61850 services. The LEDs will be used to demonstrate the control services.
- 4. The physical Inputs and Outputs are connected to an application.
- 5. For the purpose of communication it is required to designate (name) and format the information to be exchanged (in the first example position inputs and control outputs).

5.2.2 The process interface

The Digital Inputs and Outputs are shown in the following picture. The DIP Switches are shown on the left. The switches are identified as "DIP Input 1" to "DIP Input 8". The LEDs are



"LED Output 1" to "LED Output 8". These names are defined and used in this description: the names in the corresponding C application are:

```
/* Object Types */
enum
{
    DIGITAL_INPUT = 1, // Digital Input (DIP Switch )
    DIGITAL_OUTPUT = 2, // Digital Output (LED )
}eObjectTypes;
```

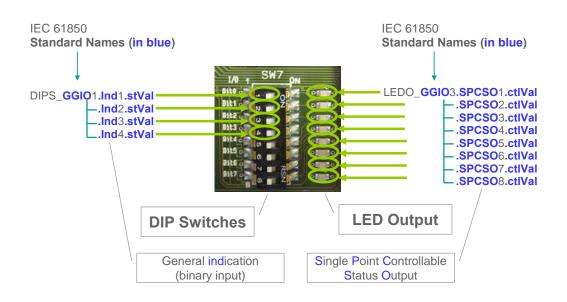
The access to the DIP Switches or LEDs from a client requires the access (path) information to identify (address) the right DIP Switch. The Application program may use any name for the DIP Switches. The programmer is free to choose any name. This name usually is not recommended to be used by a client – because it may be changed by the programmer at any time.

5.2.3 The IEC 61850 information model for general I/Os

IEC 61850 provides standardized designations for this kind of information. The so-called standardized Logical Node (LN) "**GGIO**" (Generic Process Input Output) is used to designate input and output signals.

The following excerpt of the LN **GGIO** depicts three kinds of information (each having a Data Object (DO)):

Measured Values (AnIn), Controls (SPCSO) and Status Information (Ind).

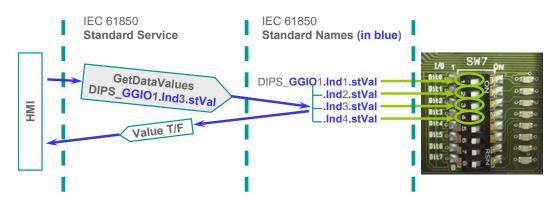

Each has a Data Object has a suffix of "1" (e.g., **Ind1**) indicating that a LN **GGIO** may have four Data Objects (**Ind1**, **Ind2**, **Ind4**, and **Ind4**). These four Data Objects will represent the upper four of the eight DIP Switches in the example.

GGIO clas	s			
Measured	l Values			
AnIn1	instMag	AnalogueValue	Analogue input	
	q	Quality		
	t	TimeStamp		
	units	Unit		
Controls				
SPCSO1	ctIVal	BOOLEAN	Single point controlla-	
	stVal	BOOLEAN	ble status output	
	q	Quality		
	t	TimeStamp		
Status inf	ormation			
Ind1	stVal	BOOLEAN	General indication (bi-	
	q	Quality	nary input)	
	t	TimeStamp		
IntIn1	stVal	INT32	Integer status input	
	q	Quality		
	t	TimeStamp		

The eight LEDs are represented by eight Data Objects **SPCSO1** ... **SPCSO8**. The signal designations (names) for both are shown in the next figure.

The **blue parts** of the names are defined in the standard. The Logical Node **GGIO** has been extended by a prefix to relate the Logical Node to the DIP Switches respectively to the LEDs. Each Logical Node has also an instance number (1 and 3) – to differentiate several Logical Nodes that have the same class name.

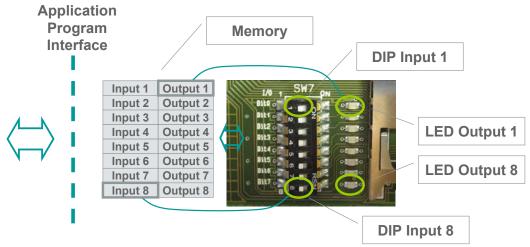
5.2.4 Browsing the information of an device

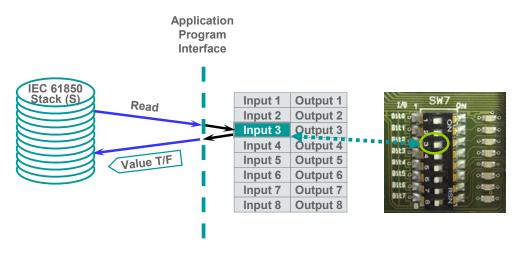

A browser (IED Scout) depicts the information accordingly. The Logical Node DIPS_GGIO1 has Status Information (designated with the "FC=ST"). Besides common information Mod, Beh, Health, the Logical Node has a Data Object Ind1 with three Data Attributes: stVal, q, and t.

LN DIPS_GGIO1	
🖃 <mark>FC</mark> ST	
🕀 🖸 🕀	{ 0, [000000000000], (u01/01/1970_00:00:00.000,[00000000]) }
🕀 D Beh	{ 0, [000000000000], (u01/01/1970_00:00:00.000,[00000000]) }
🕀 🖸 🕀 🕀	{ 0, [000000000000], (u01/01/1970_00:00:00.000,[00000000]) }
🖃 D Ind1	<pre>{ F, [000000000000], (u01/01/2010_00:14:22.000,[10011111]) }</pre>
DA stVal	F
DA q	[00000000000]
DA t	(u01/01/2010_00:14:22.000,[10011111])
🖃 D Ind2	<pre>{T, [000000000000], (u01/01/2010_00:09:43.000,[10011111]) }</pre>
DA stVal	т
DA q	[00000000000]
DA t	(u01/01/2010_00:09:43.000,[10011111])

The browser has services to read the value of **Ind1** one or cyclically (Polling). To read the value of the **DIPS_GGIO1.ST.Ind1.stVal** requires to send this name to the DK61 using the appropriate IEC 61850 service (GetDataObjectValues).

5.2.5 Communication services


The next figure shows the communication for getting the value of the third DIP Switch.


The message received by the DK61 has to be interpreted by the IEC 61850 software to figure out which DIP Switch is addressed to return the right value. The arrows shown in the above figure are pointing to the hardware DIP Switches. These "arrows" need to be specified in a way that allows the software to address internally the right internal signal of the DIP Switch. The following figures show the relation between the physical I/Os, the internal memory and the name used in the communication. The following figure maps the physical I/Os to a list of inputs (1-8) and outputs (1-8). This list represents the memory location in which values may be stored.

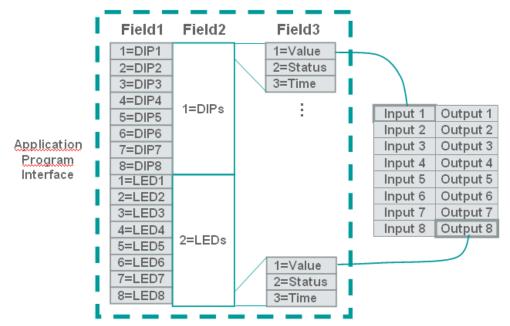
The communication stack of the IEC 61850 server (as shown in the following figure) is in principle accessing the memory location. These names "Input 1" to "Output 8" do not provide and specific meaning. To do so, there is a need of a mapping of the local information (e.g., value of DIP Switch position, time stamp of last change and quality of value (good or bad)) to the standardized designation.

The Memory table with eight Inputs and eight Outputs is shown at the right side of the following picture. The relation between these "locations" and the access information of the standardized signal names need to be specified.

The Data Object **DIPS_GGIO1.ST.Ind1** of the corresponding Logical Node specifies three Data Attributes:

Ind1	stVal	BOOLEAN
	q	Quality
	t	TimeStamp

Each of the three attributes will be communicated when a client reads the Data Object Ind1. The value stVal represents the status of a DIP Switch. The information, if it refers to the first, second, or the eights is specified by the name DIPS_GGIO1.ST.Ind1.stVal. The other two attributes q and t are also required to be specified – and they need also be stored together with the status value.

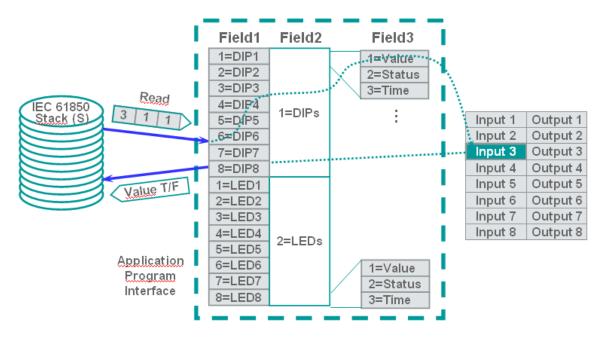


5.2.6 Binding of process values to standard information models

The binding of the memory to the access specific information is shown in the following figure. When the communication stack receives a GetDataValues request for the Data Object **DIPS_GGIO1.ST.Ind1**, then needs to get the corresponding reference to the memory locations for the **stVal**, **q** and **t**.

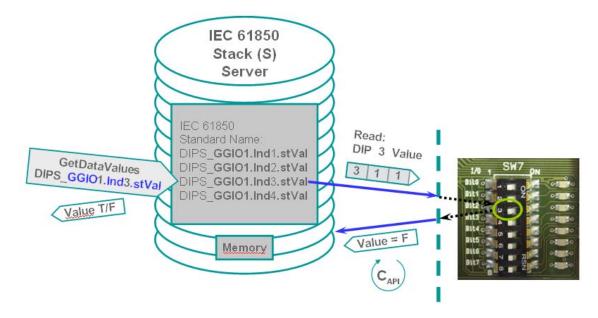
The API used for the first example uses a hierarchy of three fields: Field1 selects the position in the corresponding list between 1 and 8; Field2 (to identify if the value is related to the DIPs or to the LEDs; Field3 references to the values for **stVal**, **q** and **t**. This mapping is unique in order to refer to the correct memory location for any of the values.

The communication stack uses this hierarchical reference to get the value from the application. The following figure shows how the service <GetDataValues for


DIPS_GGIO1.Ind3.stVal> is mapped the corresponding memory location (that is bound to the real DIP Switch 3).

The stack uses the local Read (at the API between the communication software and the real application) with the three fields: Field1=3 (means third DIP Switch), Field2=1 (means DIP Switches), and Field3=1 (means Value).

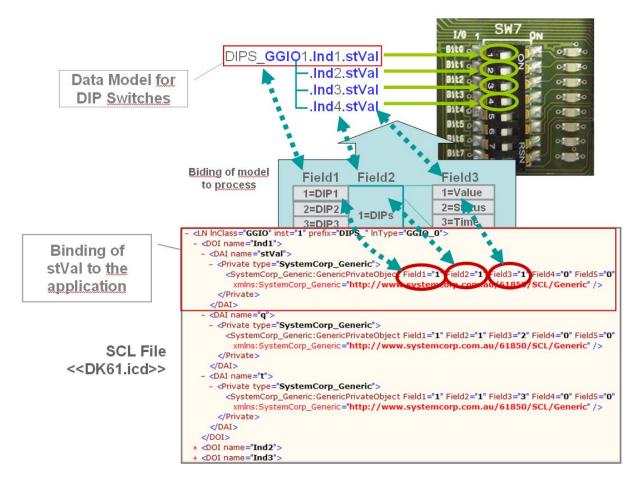
The returned value needs to be encoded according to the type of the Logical Node GGIO and **Ind1.stVal**. The type is a **BOOLEAN**. The Value TRUE or FALSE will be returned to the client that issued the GetDataValues request.



The IEC 61850 communication stack is part of an entity between the messages on the communication link (TCP/IP, Ethernet, ...) and the local Application.

The concrete encoding of the request and response messages for the service <GetDataValues for **DIPS_GGIO1.Ind3**> is shown in the <u>Appendix 7.3 - GetDataValues for</u> DIPS_GGIO1.Ind3.

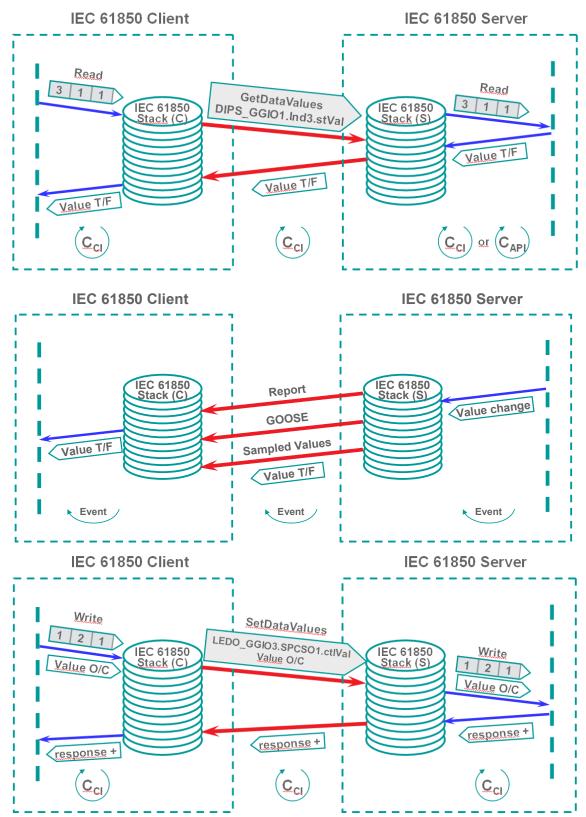
The mapping table in this example is defined by the system designer of the API between the IEC 61850 communication stack and the real application. It is up to the system designer how to organize the internal communication between the stack and the application. From a communication point of view it is not visible during the exchange of messages with that particular server device. As shown in the next figure, the client just needs to know the name of the Data Object **DIPS_GGIO1.Ind3.Ind3**. The name is "translated" into an internal access mechanism using a table to map between the standard name and the memory location of the value.



The communication stack may have its own memory that holds a copy of the real value from the application. The copy could be updated cyclically, on request by the communication stack, or by an event from the application. The service <GetDataValues for **DIPS_GGIO1.Ind3**> does not care about the implementation of the API. The difference between the three update mechanisms is not visible in the standard communication – except that the delay is longer or shorter depending on the mechanism used.

The timestamp and the quality information associated with the data value are provided the same way as the process value.

5.2.7 System Configuration Language (SCL)


The configuration of the information model and the binding of the model to the real values are described by the System Configuration Language (SCL). The following figure shows the formal syntax of the binding based on the three Fields: Field1 (position), Field2 (DIP or LED), and Field3 (value, quality or timestamp).

6 Communication services

6.1.1 Setting up the serial communication

To set up serial communication to your Development Kit DK61 you need the enclosed nullmodem cable.

- 1. Connect the null-modem cable to a free serial port of your PC and with the COM1 interface of the DK61.
- 2. Choose *Tools* \rightarrow *Terminal* from the IPC@CHIPTOOL main menu
- 3. In the connection dialog that now opens choose the following settings:
 - Connection Type: Serial
 - *Port*: The serial port of your PC that you connected the null-modem cable to, e.g. COM1
 - o Baudrate: 19200

7 Appendix

7.1 Tools related to IEC 61850

The following tools may be used for the communication between an IEC 61850 server and client:

- IED Scout IEC 61850 Browser; Download demo version: <u>http://www.omicron.at/en/products/pro/communication-protocols/iec-61850/iedscout</u>
- Wireshark IEC 61850 Network Analyser; Download open source version: http://www.wireshark.org
- UNICA Network Analyser; Download of demo version: <u>http://www.nettedautomation.com/solutions/uca/products/netana/index.html</u>

7.2 IEC 61850 Standards

IEC 61850-1

Introduction and Overview Introduction and overview of all of the parts of IEC 61850

IEC 61850-2 Glossary Terminology

IEC 61850-3

General Requirements

Quality requirements (reliability, maintainability, system availability, portability, IT security), operating conditions, auxiliary services and other engineering standards

IEC 61850-4

System and Project Management

Engineering services requirements (parameter classification, engineering tools, documentation), system Basics usage cycle (product versions, factory setup, support after factory setup), quality assurance (responsibilities, test systems, type tests, system tests, factory acceptance tests (FAT) and site acceptance tests (SAT)

IEC 61850-5

Communications Requirements for Functions and Device Models

The logical nodes principle, logical communications links, items of information for communications (PICOM), logical nodes and associated PICOMs, functions, performance requirements (response times, etc.), dynamic scenarios (information flow requirements under various operating conditions)

IEC 61850-6

Configuration Description Language for Communication Communication in Electrical Substations Formal description of the single-line schemas, devices, system structure and how they fit into the single-line schema

IEC 61850-7-1 Basic Communication Structure for Substation and Feeder Equipment

Introduction to IEC 61850-7-x, communications principles and models

IEC 61850-7-2

Basic Communication Structure for Substation and Feeder Equipment – Abstract Communication Service Interface (ACSI)Description of the Abstract Communication Service Interface (ACSI), specification of the Abstract Communication Service Interface, server database model

IEC 61850-7-3

Basic Communication Structure for Substation and Feeder Equipment – Common Data Classes Common data classes and attribute definitions

IEC 61850-7-4

Basic Communication Structure for Substation and Feeder Equipment Definition von compatible logical node classes and data classes and their logical addressing. General and typical station abstract classes for logical nodes and data

IEC 61850-7-410

Hydroelectric power plants - Communication for monitoring and control Extension of Information models for Hydro Power Plants.

IEC 61850-7-420

Communications systems for distributed energy resources (DER) - Logical nodes Extension of Information models for decentralized Energy resources like PV, Fuel Cells, Solar, etc.

IEC 61400-25-2

Communications for monitoring and control of wind power plants Extension of Information models for Wind Power Plants.

IEC 61850-8-1

Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO/IEC 9506- Part 1 and Part 2) and to ISO/IEC 8802-3 Communication mapping in the entire station (client-server communication for SCADA functions and GOOSE and GSSE data exchange for real time requirements, for example for tripping signals

IEC 61850-9-2

Specific Communication Service Mapping (SCSM) – Sample Values over ISO/IEC 8802-3 Mapping for bus-type, flexible communication of sample values from instrument transformers (with and without Merging Unit)

<u>IEC 61850-10</u> Conformance Testing Basic Conformance testing methods

7.3 Messages

The MMS messages can be traced with the Wireshark. The figure below shows the start of the session. The client sends a MMS Initiate-Request message with several parameters:

DLL-Session-MMSEthereal_2010-08-2	29.pcap - Wireshark	×		
<u>File Edit View Go Capture Analyze</u>	Statistics Telephony Tools Help			
	(윧 음) 수 수 수 주 오 🗏 🗐 이 오 오 한 1 🖬 🗵 🚳 % 🕱			
Filter:	▼ Expression Clear Apply			
Time	Source Destination Protocol Info			
7 ¹ 4.718031 8 4.720804	192.108.17.243 192.108.17.240 COTP CR TPDU SrC-ref: 0X3100 C			
9 4.720804	192.168.17.243 192.168.17.246 MMS initiate-RequestPDU			
0 4.722370	192.168.17.246 192.168.17.243 MMS initiate-ResponsePDU			
1 4.871392	192.168.17.243 192.168.17.246 TCP avocent-proxy > iso-tsap	-		
Frame 9 (245 bytes on	n wire, 245 bytes captured)			
Ethernet II, Src: Del	11_3a:65:75 (00:1c:23:3a:65:75), Dst: Intel_5f:95:42 (00:16:ea:5f:95			
Internet Protocol, Sr	rc: 192.168.17.243 (192.168.17.243), Dst: 192.168.17.246 (192.168.17			
Transmission Control	Protocol, Src Port: avocent-proxy (1078), Dst Port: iso-tsap (102),			
TPKT, Version: 3, Len	ngth: 191			
ISO 8073 COTP Connect	tion-Oriented Transport Protocol			
ISO 8327-1 OSI Session Protocol				
⊞ ISO 8823 OSI Presentation Protocol				
■ ISO 8650-1 OSI Association Control Service				
E MMS				
🗉 initiate-RequestPDU				
localDetailCalling				
proposedMaxServOutstandingCalling: 1				
proposedMaxServOutstandingCalled: 1				
proposedDataStructureNestingLevel: 5				
🗆 mmsInitRequestDeta				
proposedVersionN	lumber: 1	-		
<u></u>				
	2 01 51 02 01 03 a0 28 a8 26 80 .3(1Q(.&.			
00d0 03 00 fd e8 81 01 00e0 01 01 81 03 05 f1	1 01 82 01 01 83 01 05 a4 16 80 1 00 82 0c 03 ee 08 00 00 04 00			
00f0 00 00 00 00 18				
MMS (mms), 40 bytes	Packets Profile: Default	=		
		-//4		

The complete trace with the Wireshark of a complete session initiated by the client can be found here:

http://nettedautomation.com/iec61850li/dll

Download the file by "Save under", change the file extension accordingly (.pcap).

7.4 GetDataValues for DIPS_GGIO1.Ind3

The following figures show the request and response messages of the service <GetDataValues for **DIPS_GGIO1.Ind3**>. This message comprises all layers from Data Link (Ethernet), over IP, TCP, upper layers including MMS.

The IEC 61850-7-2 service <GetDataValues for **DIPS_GGIO1.Ind3**> is mapped to a MMS Read Request message. The Item Name at the bottom (ItemName) is "**DIPS_GGIO1\$ST\$nd3**". The **\$** is used as the MMS-Separator (instead of a "."). The "**ST**" is indicating the status information (**stVal**, **q** and **t**). The DomainName is used to carry the Logical Device Name of the IEC 61850. The Logical Device is (as for now) a container that contains Logical Nodes.

Read Request:

Ethereal-DK61_Full-Sequence_2010-03-05 - Ethereal		-0×						
File Edit View Go Capture Analyze Statistics Help								
No Time Source	Destination Proto	col Info						
43 0.032040 103.234.143.133	103.234.143.200 /mm	s keau						
46 0.853041 169.254.145.200	169.254.145.195 MMS							
47 0.855833 169.254.145.195 48 0.856036 169.254.145.200	169.254.145.200 MMS 169.254.145.195 MMS							
48 0.858056 189.254.145.200	169.234.145.195 MM	s Read j						
■ Frame 46 (125 bytes on wire, 125 bytes	es captured)							
■ Ethernet II, Src: 00:1c:23:3a:65:75):30:56:a1:26						
■ Internet Protocol, Src: 169.254.145.								
⊞Transmission Control Protocol, Src P	ort: 3542 (3542), Dst Port:	iso-tsap (102						
TPKT, Version: 3, Length: 71								
■ ISO 8073 COTP Connection-Oriented Tr	ansport Protocol							
■ISO 8327-1 OSI Session Protocol ■ISO 8327-1 OSI Session Protocol								
BISO 8823 OSI Presentation Protocol								
■ ISO/IEC 9506 MMS								
Conf Request (0)								
Read (4)								
InvokeID: InvokeID: 16								
🗆 Read								
List of Variable								
VariableSpecification								
Object Name Domain Specific								
DomainName: DK61LDevice								
□ ItemName:	•							
ItemName: DIPS_GGI01\$ST	Ind3							
4								
0000 00 30 56 al 26 85 00 lc 23 3a 6	5 75 08 00 45 00 .0v.&	#:euE.						
0010 00 6f a6 98 40 00 80 06 dc 67 a	9 fe 91 c8 a9 fe .o@	.g						
	b 00 3d f9 50 18f.y	>.+.=.P.						
	2 f0 80 01 00 01w 0 31 02 01 10 a4 .a:08	3 1						
	2 1a 0c 44 4b 36 , .*. (0&.)	\$."DK6						
0060 31 4c 44 65 76 69 63 65 31 1a 1	2 44 49 50 53 5f 1LDevice	1. DIPS_						
0070 47 47 49 4f 31 24 53 54 24 49 6	e 64 33 GGI01\$ST	\$Ind3						
ItemName (mms.itemname), 18 bytes	P: 133 D: 133 M: 0							

The MMS response message contains a Structure of three components with the value and the corresponding Type. The first value is of type BOOLEAN (it represents the stVal). The second type is a Bitstring (that represents the quality information). The last component is the UTC time stamp – note that the time of the clock was not synchronized during the test.

7.5 Standardized Logical Nodes

LN Group	#	Clause	Description	Name	Document
	1	5.3.2	Physical device information	LPHD	7-4 Ed2 FDIS
	2	5.3.3	Common Logical Node	Common LN	7-4 Ed2 FDIS
	3	5.3.4	Logical node zero	LLNO	7-4 Ed2 FDIS
	4	5.3.5	Physical Communication channel	LCCH	7-4 Ed2 FDIS
L			Supervision		
System LNs	5	5.3.6	GOOSE subscription	LGOS	7-4 Ed2 FDIS
	6	5.3.7	Sampled value subscription	LSVS	7-4 Ed2 FDIS
	7	5.3.8	Time management	LTIM	7-4 Ed2 FDIS
	8	5.3.9	Time master supervision	LTMS	7-4 Ed2 FDIS
	9	5.3.10	Service tracking	LTRK	7-4 Ed2 FDIS
	10	5.4.2	Neutral current regulator	ANCR	7-4 Ed2 FDIS
А	11	5.4.3	Reactive power control	ARCO	7-4 Ed2 FDIS
Automatic	12	5.4.4	Resistor control	ARIS	7-4 Ed2 FDIS
Control	13	5.4.5	Automatic tap changer controller	ATCC	7-4 Ed2 FDIS
	14	5.4.6	Voltage control	AVCO	7-4 Ed2 FDIS
	15	5.5.2	Alarm handling	CALH	7-4 Ed2 FDIS
	16	5.5.3	Cooling group control	CCGR	7-4 Ed2 FDIS
С	17	5.5.4	Interlocking	CILO	7-4 Ed2 FDIS
Control	18	5.5.5	Point-on-wave switching	CPOW	7-4 Ed2 FDIS
	19	5.5.6	Switch controller	CSWI	7-4 Ed2 FDIS
	20	5.5.7	Synchronizer controller	CSYN	7-4 Ed2 FDIS
D	21	5.2.2	DER plant corporate characteristics	DCRP	7-420 Ed1 IS
Decentralized			at the ECP		
Energy Re-	22	5.2.3	Operational characteristics at ECP	DOPR	7-420 Ed1 IS
sources	23	5.2.4	DER operational authority at the	DOPA	7-420 Ed1 IS
	24	F 2 F	ECP	DODM	7 400 5-14 10
	24	5.2.5	Operating mode at ECP	DOPM	7-420 Ed1 IS
	25	5.2.6	Status information at the ECP	DPST	7-420 Ed1 IS
	26	5.2.7	DER economic dispatch parameters	DCCT	7-420 Ed1 IS
	27	5.2.8	DER energy and/or ancillary ser- vices schedule control	DSCC	7-420 Ed1 IS
	28	5.2.9	DER energy and/or ancillary ser-	DSCH	7-420 Ed1 IS
		5.2.7	vices schedule		. 120 241 10
	29	5.3.2	DER controller characteristics	DRCT	7-420 Ed1 IS
	30	5.3.3	DER controller status	DRCS	7-420 Ed1 IS
	31	5.3.4	DER supervisory control	DRCC	7-420 Ed1 IS
	32	6.1.2	DER unit generator	DGEN	7-420 Ed1 IS
	33	6.1.3	DER generator ratings	DRAT	7-420 Ed1 IS
	34	6.1.4	DER advanced generator ratings	DRAZ	7-420 Ed1 IS
	35	6.1.5	Generator cost	DCST	7-420 Ed1 IS
	36	6.2.2	Excitation ratings	DREX	7-420 Ed1 IS
	37	6.2.3	Excitation	DEXC	7-420 Ed1 IS
	38	6.3.2	Speed/Frequency Controller	DSFC	7-420 Ed1 IS
	39	7.1.3	Reciprocating Engine	DCIP	7-420 Ed1 IS
	40	7.2.3	Fuel cell controller	DFCL	7-420 Ed1 IS
	41	7.2.4	Fuel cell stack	DSTK	7-420 Ed1 IS
	42	7.2.5	Fuel processing module	DFPM	7-420 Ed1 IS
	43	7.3.3	Photovoltaics module ratings	DPVM	7-420 Ed1 IS
	44	7.3.4	Photovoltaics array characteristics	DPVA	7-420 Ed1 IS

© 2010 SystemCORP Embedded Technology Pty Ltd and NettedAutomation GmbH

LN Group	#	Clause	Description	Name	Document
	45	7.3.5	Photovoltaics array controller	DPVC	7-420 Ed1 IS
	46	7.3.6	Tracking controller	DTRC	7-420 Ed1 IS
	47	7.4.3	CHP system controller	DCHC	7-420 Ed1 IS
	48	7.4.4	Thermal storage	DCTS	7-420 Ed1 IS
	49	7.4.5	Boiler	DCHB	7-420 Ed1 IS
	50	7.1.3	Reciprocating Engine	DCIP	7-420 Ed1 IS
	51	7.2.3	Fuel cell controller	DFCL	7-420 Ed1 IS
	52	8.1.3	Fuel delivery system	DFLV	7-420 Ed1 IS
	53	5.6.2	Counter	FCNT	7-4 Ed2 FDIS
	54	5.6.3	Curve shape description	FCSD	7-4 Ed2 FDIS
	55	5.6.4	Generic Filter	FFIL	7-4 Ed2 FDIS
	56	5.6.5	Control function output limitation	FLIM	7-4 Ed2 FDIS
	57	5.6.6	PID regulator	FPID	7-4 Ed2 FDIS
	58	5.6.7	Ramp function	FRMP	7-4 Ed2 FDIS
	59	5.6.8	Set-point control function	FSPT	7-4 Ed2 FDIS
	60	5.6.9	Action at over threshold	FXOT	7-4 Ed2 FDIS
F	61	5.6.10	Action at under threshold	FXUT	7-4 Ed2 FDIS
Functional	62	7.2.2	Counter	FCNT	7-410 Ed1 IS
Blocks	63	7.2.3	Curve shape description	FCSD	7-410 Ed1 IS
	64	7.2.4	Generic Filter	FFIL	7-410 Ed1 IS
	65	7.2.5	Control function output limitation	FLIM	7-410 Ed1 IS
	66	7.2.6	PID regulator	FPID	7-410 Ed1 IS
	67	7.2.7	Ramp function	FRMP	7-410 Ed1 IS
	68	7.2.8	Set-point control function	FSPT	7-410 Ed1 IS
	69	7.2.9	Action at over threshold	FXOT	7-410 Ed1 IS
	70	7.2.10	Action at under threshold	FXUT	7-410 Ed1 IS
	71	8.4.2	Sequencer	FSEQ	7-420 Ed1 IS
	72	5.7.2	Generic automatic process control	GAPC	7-4 Ed2 FDIS
G	73	5.7.3	Generic process I/O	GGIO	7-4 Ed2 FDIS
Generic	74	5.7.4	Generic log	GLOG	7-4 Ed2 FDIS
	75	5.7.5	Generic security application	GSAL	7-4 Ed2 FDIS
	76	7.3.2	Turbine - generator shaft bearing	HBRG	7-410 Ed1 IS
	77	7.3.3.	Combinator	НСОМ	7-410 Ed1 IS
	78	7.3.4	Hydropower dam	HDAM	7-410 Ed1 IS
	79	7.3.5	Dam leakage supervision	HDLS	7-410 Ed1 IS
	80	7.3.6	Gate position indicator	HGPI	7-410 Ed1 IS
	81	7.3.7	Dam gate	HGTE	7-410 Ed1 IS
	82	7.3.8	Intake gate	HITG	7-410 Ed1 IS
	83	7.3.9	Joint control	HJCL	7-410 Ed1 IS
	84	7.3.10	Leakage supervision	HLKG	7-410 Ed1 IS
н	85	7.3.11	Water level indicator	HLVL	7-410 Ed1 IS
Hydro Power	86	7.3.12	Mechanical brake	HMBR	7-410 Ed1 IS
	87	7.3.13	Needle control	HNDL	7-410 Ed1 IS
	88	7.3.14	Water net head data	HNHD	7-410 Ed1 IS
	89	7.3.15	Dam over-topping protection	HOTP	7-410 Ed1 IS
	90	7.3.16	Hydropower / water reservoir	HRES	7-410 Ed1 IS
	91	7.3.17	Hydropower unit sequencer	HSEQ	7-410 Ed1 IS
	92	7.3.18	Speed monitoring	HSPD	7-410 Ed1 IS
	93	7.3.19	Hydropower unit	HUNT	7-410 Ed1 IS
	94	7.3.20	Water control	HWCL	7-410 Ed1 IS
1	95	5.8.2	Archiving	IARC	7-4 Ed2 FDIS
I	70	5.6.Z	Archiving	IARU	7-4 EUZ FDIS

 $\ensuremath{\textcircled{\sc 0}}$ 2010 SystemCORP Embedded Technology Pty Ltd and NettedAutomation GmbH

LN Group	#	Clause	Description	Name	Document
Interfacing	96	5.8.3	Human machine interface	IHMI	7-4 Ed2 FDIS
and Archiving	97	5.8.4	Safety alarm function	ISAF	7-4 Ed2 FDIS
_	98	5.8.5	Telecontrol interface	ITCI	7-4 Ed2 FDIS
	99	5.8.6	Telemonitoring interface	ITMI	7-4 Ed2 FDIS
	100	5.8.7	Teleprotection communication in-	ITPC	7-4 Ed2 FDIS
			terfaces		
	101	7.4.2	Safety alarm function	ISAF	7-410 Ed1 IS
	102	5.9.2	Fan	KFAN	7-4 Ed2 FDIS
	103	5.9.3	Filter	KFIL	7-4 Ed2 FDIS
К	104	5.9.4	Pump	KPMP	7-4 Ed2 FDIS
Mechanical	105	5.9.5	Tank	KTNK	7-4 Ed2 FDIS
and non-	106	5.9.6	Valve control	KVLV	7-4 Ed2 FDIS
electric pri-	107	7.5.2	Fan	KFAN	7-410 Ed1 IS
mary equip-	108	7.5.3	Filter	KFIL	7-410 Ed1 IS
ment	109	7.5.4	Pump	KPMP	7-410 Ed1 IS
		7.5.5	Tank	KTNK	7-410 Ed1 IS
		7.5.6	Valve control	KVLV	7-410 Ed1 IS
	112	5.10.2	Environmental information	MENV	7-4 Ed2 FDIS
	113	5.10.3	Flicker Measurement Name	MFLK	7-4 Ed2 FDIS
	114	5.10.4	Harmonics or interharmonics	MHAI	7-4 Ed2 FDIS
	115	5.10.5	Non phase related harmonics or in-	MHAN	7-4 Ed2 FDIS
			terharmonics		
	116	5.10.6	Hydrological information	MHYD	7-4 Ed2 FDIS
	117	5.10.7	DC measurement	MMDC	7-4 Ed2 FDIS
	118	5.10.8	Meteorological information	MMET	7-4 Ed2 FDIS
		5.10.9	Metering	MMTN	7-4 Ed2 FDIS
		5.10.10	Metering	MMTR	7-4 Ed2 FDIS
М		5.10.11	Non phase related Measurement	MMXN	7-4 Ed2 FDIS
Metering and		5.10.12	Measurement	MMXU	7-4 Ed2 FDIS
measurement		5.10.13	Sequence and imbalance	MSQI	7-4 Ed2 FDIS
		5.10.14	Metering Statistics	MSTA	7-4 Ed2 FDIS
		7.6.2	Environmental information	MENV	7-410 Ed1 IS
	-	7.6.3	Hydrological information	MHYD	7-410 Ed1 IS
		7.6.4	DC measurement	MMDC	7-410 Ed1 IS
		7.6.5	Meteorological information	MMET	7-410 Ed1 IS
		8.1.2	Fuel characteristics	MFUL	7-420 Ed1 IS
	-	8.5.3	Pressure measurements	MPRS	7-420 Ed1 IS
		8.5.4	Heat measured values	MHET	7-420 Ed1 IS
		8.5.5	Flow measurements	MFLW	7-420 Ed1 IS
		8.5.7	Emissions measurements	MENV	7-420 Ed1 IS
Р		5.11.2	Differential	PDIF	7-4 Ed2 FDIS
Protection		5.11.3	Direction comparison	PDIR	7-4 Ed2 FDIS
functions		5.11.4	Distance	PDIS	7-4 Ed2 FDIS
	-	5.11.5	Directional overpower	PDOP	7-4 Ed2 FDIS
		5.11.6	Directional underpower	PDUP	7-4 Ed2 FDIS
		5.11.7	Rate of change of frequency	PFRC	7-4 Ed2 FDIS
	-	5.11.8	Harmonic restraint	PHAR	7-4 Ed2 FDIS
		5.11.9	Ground detector	PHIZ	7-4 Ed2 FDIS
	-	5.11.10	Instantaneous overcurrent	PIOC	7-4 Ed2 FDIS
		5.11.11	Motor restart inhibition	PMRI	7-4 Ed2 FDIS
	144	5.11.12	Motor starting time supervision	PMSS	7-4 Ed2 FDIS

LN Group	#	Clause	Description	Name	Document
	145	5.11.13	Over power factor	POPF	7-4 Ed2 FDIS
	146	5.11.14	Phase angle measuring	PPAM	7-4 Ed2 FDIS
	147	5.11.15	Rotor protection	PRTR	7-4 Ed2 FDIS
	148	5.11.16	Protection scheme	PSCH	7-4 Ed2 FDIS
	149	5.11.17	Sensitive directional earthfault	PSDE	7-4 Ed2 FDIS
	150	5.11.18	Transient earth fault	PTEF	7-4 Ed2 FDIS
	151	5.11.19	Tyristor protection	PTHF	7-4 Ed2 FDIS
	152	5.11.20	Time overcurrent	PTOC	7-4 Ed2 FDIS
	153	5.11.21	Overfrequency	PTOF	7-4 Ed2 FDIS
	154	5.11.22	Overvoltage	PTOV	7-4 Ed2 FDIS
	155	5.11.23	Protection trip conditioning	PTRC	7-4 Ed2 FDIS
	156	5.11.24	Thermal overload	PTTR	7-4 Ed2 FDIS
	157	5.11.25	Undercurrent	PTUC	7-4 Ed2 FDIS
	158	5.11.26	Underfrequency	PTUF	7-4 Ed2 FDIS
	159	5.11.27	Undervoltage	PTUV	7-4 Ed2 FDIS
	160	5.11.28	Underpower factor	PUPF	7-4 Ed2 FDIS
	161	5.11.29	Voltage controlled time overcurrent	PVOC	7-4 Ed2 FDIS
	162	5.11.30	Volts per Hz	PVPH	7-4 Ed2 FDIS
	163	5.11.31	Zero speed or underspeed	PZSU	7-4 Ed2 FDIS
	164	7.7.2	Rotor protection	PRTR	7-410 Ed1 IS
	165	7.7.3	Thyristor protection	PTHF	7-410 Ed1 IS
	166	5.12.2	Frequency Variation	QFVR	7-4 Ed2 FDIS
	167	5.12.3	Current Transient	QITR	7-4 Ed2 FDIS
Q		5.12.4	Current Unbalance Variation	QIUB	7-4 Ed2 FDIS
Power quality	-	5.12.5	Voltage Transien	QVTR	7-4 Ed2 FDIS
events		5.12.6	Voltage Unbalance Variation	QVUB	7-4 Ed2 FDIS
			Voltage Variation	QVVR	7-4 Ed2 FDIS
-	172	5.13.2	Disturbance recorder channel ana-	RADR	7-4 Ed2 FDIS
			logue		
	173	5.13.3	Disturbance recorder channel bi-	RBDR	7-4 Ed2 FDIS
			nary		
	174	5.13.4	Breaker failure	RBRF	7-4 Ed2 FDIS
R	175	5.13.5	Directional element	RDIR	7-4 Ed2 FDIS
Protection re-	176	5.13.6	Disturbance recorder function	RDRE	7-4 Ed2 FDIS
lated func-	177	5.13.7	Disturbance record handling	RDRS	7-4 Ed2 FDIS
tions			Fault locator	RFLO	7-4 Ed2 FDIS
1013		5.13.9	Differential measurements	RMXU	7-4 Ed2 FDIS
		5.13.10	Power swing detection/blocking	RPSB	7-4 Ed2 FDIS
	181	5.13.11	Autoreclosing	RREC	7-4 Ed2 FDIS
	182		Synchronism-check	RSYN	7-4 Ed2 FDIS
	183	7.8.2	synchronising or synchro-check de-	RSYN	7-410 Ed1 IS
			vice		
S			Monitoring and diagnostics for arcs	SARC	7-4 Ed2 FDIS
Supervision	-	5.14.3	Circuit breaker supervision	SCBR	7-4 Ed2 FDIS
and monitor-	186	5.14.4	Insulation medium supervision	SIMG	7-4 Ed2 FDIS
ing	107	Б 1 / Г	(gas)	SIMI	
	187	5.14.5	Insulation medium supervision (liq- uid)	SIML	7-4 Ed2 FDIS
	188	5.14.6	Tap changer Supervision	SLTC	7-4 Ed2 FDIS
	189	5.14.7	Supervision of Operating Mecha-	SOPM	7-4 Ed2 FDIS
			nism		
		-		·	

LN Group	#	Clause	Description	Name	Document
	190	5.14.8	Monitoring and diagnostics for par-	SPDC	7-4 Ed2 FDIS
			tial discharges		
	191	5.14.9	Power Transformer Supervision	SPTR	7-4 Ed2 FDIS
	192	5.14.10	Circuit Switch Supervision	SSWI	7-4 Ed2 FDIS
	193	5.14.11	Temperature supervision	STMP	7-4 Ed2 FDIS
	194	5.14.12	Vibration supervision	SVBR	7-4 Ed2 FDIS
	195	7.9.2	temperature supervision	STMP	7-410 Ed1 IS
		7.9.3	vibration supervision	SVBR	7-410 Ed1 IS
	197		Vibration conditions	SVBR	7-420 Ed1 IS
		8.5.2	Temperature measurements	STMP	7-420 Ed1 IS
	-	5.15.2	Angle	TANG	7-4 Ed2 FDIS
		5.15.3	Axial displacement	TAXD	7-4 Ed2 FDIS
	-	5.15.4	Current transformer	TCTR	7-4 Ed2 FDIS
	-	5.15.5	Distance	TDST	7-4 Ed2 FDIS
	-	5.15.6	Liquid flow	TFLW	7-4 Ed2 FDIS
		5.15.7	Frequency	TFRQ	7-4 Ed2 FDIS
	-	5.15.8	Generic sensor	TGSN	7-4 Ed2 FDIS
	-	5.15.9	Humidity	THUM	7-4 Ed2 FDIS
	207		LMedia level	TLVL	7-4 Ed2 FDIS
		5.15.11	Magnetic field	TMGF	7-4 Ed2 FDIS
		5.15.12	Movement senso	TMVM	7-4 Ed2 FDIS
	210	5.15.13	Position indicator	TPOS	7-4 Ed2 FDIS
	211	5.15.14	Pressure sensor	TPRS	7-4 Ed2 FDIS
		5.15.15	Rotation transmitter	TRTN	7-4 Ed2 FDIS
	213	5.15.16	Sound pressure sensor	TSND	7-4 Ed2 FDIS
	214	5.15.17	Temperature sensor	TTMP	7-4 Ed2 FDIS
т	-	5.15.18	Mechanical tension / stress	TTNS	7-4 Ed2 FDIS
Instrument	-	5.15.19	Vibration sensor	TVBR	7-4 Ed2 FDIS
Ttransformers	217	5.15.20	Voltage transformer	TVTR	7-4 Ed2 FDIS
and sensors	-	5.15.21	Water acidity	TWPH	7-4 Ed2 FDIS
		7.10.2	Angle sensor	TANG	7-410 Ed1 IS
		7.10.3	Axial displacement sensor	TAXD	7-410 Ed1 IS
		7.10.4	Distance sensor	TDST	7-410 Ed1 IS
		7.10.5	Flow sensor	TFLW	7-410 Ed1 IS
		7.10.6	Frequency sensor	TFRQ	7-410 Ed1 IS
		7.10.7	Humidity sensor	THUM	7-410 Ed1 IS
	-	7.10.8	Level sensor	TLEV	7-410 Ed1 IS
		7.10.9	Magnetic field sensor	TMGF	7-410 Ed1 IS
	-	7.10.10	Movement sensor	TMVM	7-410 Ed1 IS
		7.10.11	Position indicator	TPOS	7-410 Ed1 IS
	-	7.10.12	Pressure sensor	TPRS	7-410 Ed1 IS
		7.10.13	Rotation transmitter	TRTN	7-410 Ed1 IS
		7.10.14	Sound pressure sensor	TSND	7-410 Ed1 IS
		7.10.15	Temperature sensor	TTMP	7-410 Ed1 IS
		7.10.16	Mechanical tension /stress sensor	TTNS	7-410 Ed1 IS
	-	7.10.17	Vibration sensor	TVBR	7-410 Ed1 IS
		7.10.18	Water pH sensor	TWPH	7-410 Ed1 IS
W	236	Table 7	Wind turbine general information	WTUR	61400-25-2
Wind Turbines	007			MDOT	Ed1 IS
	237	Table 8	Wind turbine rotor information	WROT	61400-25-2
	l	Į			Ed1 IS

LN Group	#	Clause	Description	Name	Document
	238	Table 9	Wind turbine transmission informa-	WTRM	61400-25-2
			tion		Ed1 IS
	239	Table 10	Wind turbine generator information	WGEN	61400-25-2
					Ed1 IS
	240	Table 11	Wind turbine converter information	WCNV	61400-25-2
					Ed1 IS
	241	Table 12	Wind turbine transformer informa-	WTRF	61400-25-2
			tion		Ed1 IS
	242	Table 13	Wind turbine nacelle information	WNAC	61400-25-2
					Ed1 IS
	243	Table 14	Wind turbine yawing information	WYAW	<mark>61400-25-2</mark>
					Ed1 IS
	244	Table 15	Wind turbine tower information	WTOW	61400-25-2
					Ed1 IS
	245	Table 16		WMET	61400-25-2
		T 1 1 4 7	information		Ed1 IS
	246	Table 17	Wind power plant alarm informa-	WALM	61400-25-2
	0.47	T-1-1- 10	tion		Ed1 IS
	247	Table 18	Wind turbine state log information	WSLG	61400-25-2
	240	Table 10	Wind turbing angle que les informes		Ed1 IS
	248	Table 19	5 5	WALG	61400-25-2 Ed1 IS
	249	Table 20	tion Wind turbine report information	WREP	61400-25-2
	249			WREP	Ed1 IS
	250	Table 21	Wind power plant active power	WAPC	61400-25-2
	230		control information	WAIC	Ed1 IS
	251	Table 22	Wind power plant reactive power	WRPC	61400-25-2
			control information		Ed1 IS
v	252	5.16.2	Circuit breaker	XCBR	7-4 Ed2 FDIS
X	253	5.16.3	Circuit switch	XSWI	7-4 Ed2 FDIS
Switchgear	254	8.3.2	Fuse	XFUS	7-420 Ed1 IS
	255	5.17.2	Earth fault neutralizer (Petersen	YEFN	7-4 Ed2 FDIS
Y			coil)		
Power trans-		5.17.3	Tap changer	YLTC	7-4 Ed2 FDIS
formers	257	5.17.4	Power shunt	YPSH	7-4 Ed2 FDIS
		5.17.5	Power transformer	YPTR	7-4 Ed2 FDIS
Z		5.18.2	Auxiliary network	ZAXN	7-4 Ed2 FDIS
further power		5.18.3	Battery	ZBAT	7-4 Ed2 FDIS
system		5.18.4	Bushing	ZBSH	7-4 Ed2 FDIS
equipment		5.18.5	Power cable	ZCAB	7-4 Ed2 FDIS
		5.18.6	Capacitor bank	ZCAP	7-4 Ed2 FDIS
		5.18.7	Converter	ZCON	7-4 Ed2 FDIS
		5.18.8	Generator	ZGEN	7-4 Ed2 FDIS
		5.18.9	Gas insulated line	ZGIL	7-4 Ed2 FDIS
		5.18.10	Power overhead line	ZLIN	7-4 Ed2 FDIS
		5.18.11	Motor	ZMOT	7-4 Ed2 FDIS
		5.18.12	Reactor	ZREA	7-4 Ed2 FDIS
	270	5.18.13	Resistor	ZRES	7-4 Ed2 FDIS
	271	5.18.14 5.19.15	Rotating reactive component	ZRRC	7-4 Ed2 FDIS
		5.18.15 5.18.16	Surge arrestor	ZSAR ZSCR	7-4 Ed2 FDIS
		5.18.16	Semi-conductor controlled rectifier		7-4 Ed2 FDIS
	214	ວ. ເປ. 17	Synchronous machine	ZSMC	7-4 Ed2 FDIS

LN Group	#	Clause	Description	Name	Document
	275	5.18.18	Thyristor controlled frequency con- verter	ZTCF	7-4 Ed2 FDIS
	276	5.18.19	Thyristor controlled reactive com- ponent	ZTCR	7-4 Ed2 FDIS
	277	7.11.2	Neutral resistor	ZRES	7-410 Ed1 IS
	278	7.11.3	Semiconductor rectifier controller	ZSCR	7-410 Ed1 IS
	279	7.11.4	Synchronous machine	ZSMC	7-410 Ed1 IS
	280	6.4.2	Rectifier	ZRCT	7-420 Ed1 IS
	281	6.4.3	Inverter	ZINV	7-420 Ed1 IS
	282	8.2.2	Battery systems	ZBAT	7-420 Ed1 IS
	283	8.2.3	Battery charger	ZBTC	7-420 Ed1 IS

* End of Document *