
The Skunk Works
from

Herbert Falk

The concept of an Open Source based MMS analyzer has always been intriguing, but
until recently the idea lacked the open source technology. During several meetings,
people asked if something open source could be created in order to facilitate adoption of
MMS based protocols (e.g. ICCP/TASE.2, UCA, and IEC 61850). Initially when I
started thinking about such an analyzer, 4 years ago there was one low cost solution
available, however it proved difficult to extend (or maybe I just wasn’t appropriately
motivated). I stumbled upon Ethereal (www.ethereal.com) a couple of years ago and have
used it to capture network packets since then.

The resurrection of the MMS Ethernet analyzer came during an August 2003 Interop test
of some security extensions for ICCP. We used Ethereal to analyze SSL/TLS
transactions and accidentally discovered that Ethereal could analyze RFC-1006/TP0 and
CLNP/TP4 traffic. At that time, it became evident that Ethereal represented a platform
that could be extended, it was open source, an observer asked if it was extensible. Thus
the SkunkWorks project began.

Why SkunkWorks? Because the Ethereal analyzer is technology/code contributed by
multiple people. My work, performed after business hours, was to add the packet
decoding capabilities required for ICCP/TASE.2, UCA, and IEC 61850. The result is
what you currently have.

Although not fully tested, it is fully functional. As with most open source projects, there
are querks that must be contended with and these are documented in the following
sections. But to summarize the state of affairs:

MMS support for OSI and TCP profiles is implemented. Certain services have not
been implemented or have been implemented and have not been tested. The
decoding is appropriate for UCA, ICCP/TASE.2, and IEC 61850 profiles that
utilize MMS.

IEC 61850 GSSE/ UCA GOOSE Support. This is implemented and has been
fully tested.

IEC 61850 GOOSE: This is implemented and has been fully tested.

IEC 61850-9-2 SMV: This is implemented and has been partially tested.

IEC 61850 GSE Management: This is implemented, but has not been tested (no
traces available).

http://www.ethereal.com/
khs
Textfeld
MMS Ether-Real Network Analyzer

Problem Reporting

In order to further refine and test the analyzer, I hope that you use the analyzer and report
to me (herb@sisconet.com). Please use [Analyzer]: in the subject field so that I can
differentiate you email from SPAM.

If there are problems, please supply a capture file, description of the problem, and the
“packet number”(s) that are exhibiting the problem. Additionally, return email address
and contact information are requested.

Since this is a home project, responses will not be immediate, but hopefully timely.

MMS Decoder in Ethereal
The MMS decoder supports: OSI Transport (tested) and TCP/IP (Tested).

The TCP/IP profile currently supports the display of SSL/TLS, but not the ACSE
Security parameters.

An oddity in the decoder is that the Initiate Request/Response will appear as the PRES
(presentation) protocol.

In order to have the decoder work properly, you must select that the COTP (connection
oriented Transport protocol) perform reassembly.

1). Select Edit/Preferences

2). Expand Protocols

mailto:herb@sisconet.com

3). Select Reassembly

For TCP:

For TPKT:

For COTP:

Setting up Capture Filters

Step 1:

Step 2: Create a capture string (this can be done on the capture filter line or by creating a
permanent filter).

Some suggested filters:

To capture all traffic to/from a address:

 Host <ipAddress>

To capture traffic between two nodes:
“
((Ip src <ipAddress>) and (ip dst <ipAddress1>))
 or
 ((Ip src <ipAddress1>) and (ip dst <ipAddress>))
“

Another suggestion is to select “Update list of
packets in real time”. This will show the packets
as they arrive.

You can also use a filter that is host address based
(e.g. host <ip address>) that will capture all
packets inbound and outbound from the specified

address.

MMS Service Decoding and Testing

Service Implementation and Tested Matrix
 Request Response
Service Decoded Tested Decoded Tested

Initiate X X X X
Conclude X X X X
Abort X X X X
Status X X X X
GetNameList X X X X
Identify X X X X
Rename
Read X X X X
Write X X X X
GetVariableAccessAttributes X X X X
DefineNamedVariable X X
DefineScatteredAccess
ScatteredAccessAttributes

Service Implementation and Tested Matrix
 Request Response
Service Decoded Tested Decoded Tested
DeleteVariableAccess X X
DefineNamedVariableList X X X X
GetNamedVariableListAttributes X X
DeleteNamedVariableList X X
DefineNamedType X
GetNamedTypeAttributes
DeleteNamedType X
Input X X
Output X X
TakeControl
RelinquishControl X
DefineSemaphore
DeleteSemaphore
ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
DownloadSegment X
TerminateDownloadSequence
InitiateUploadSequence
UploadSegment X
TerminateUploadSegment X
RequestDomainDownload
RequestDomainUpload
LoadDomainContent
StoreDomainContent
DeleteDomain
GetDomainAttributes X X X X
CreateProgramInvocation X X
DeleteProgramInvocation X X
Start X X
Stop X X
Resume X X
Reset X X
Kill X X
GetProgramInvocationAttributes X X
ObtainFile X X
DefinEventCondition X
DeleteEventCondition X
GetEventConditionAttributes
ReportEventConditionStatus
AlterEventConditionMonitoring X
TriggerEvent X
DefineEventAction X
DeleteEventAction X
GetEventActionAttributes
ReportEventActionStatus X
DefineEventEnrollment X
DeleteEventEnrollment X
ReportEventEnrollmentStatus
GetEventEnrollmentAttributes

Service Implementation and Tested Matrix
 Request Response
Service Decoded Tested Decoded Tested
AcknowledgeEventNotification X
GetAlarmSummary
GetAlarmEnrollmentSummary
ReadJournal X Partial X Partial
WriteJournal X X
InitializeJournal X X
ReportJournalStatus X Partial X Partial
CreateJournal X
DeleteJournal X
GetCapabilityList X X X X
FileOpen X X X X
FileRead X X X X
FileClose X X X X
FileRename X X
FileDirectory X X X X

IEC GOOSE Decoder
There is an IEC GOOSE decoder in the package. It is suggested that the Ethernet
protocol capture filter be used:

ether proto protocol where protocol should be 0x88b8

Additionally, the multicast filter could be used.

IEC GSSE Decoder

Use the multicast capture for this protocol. And then use the Filter capability in Ethereal.

IEC SMV Decoder
ether proto protocol where protocol should be 0x88bA

Use the multicast capture for this protocol. And then use the Filter capability in Ethereal.

IEC GSE Decoder
Use the multicast capture for this protocol. And then use the Filter capability in Ethereal.
It is also possible to use the ether proto protocol where protocol should be 0x88b9.

Capture Instructions (from www.tcpdump.org)

expression

 selects which packets will be dumped. If no

 expression is given, all packets on the net will be

 dumped. Otherwise, only packets for which expres

 sion is `true' will be dumped.

 ber) preceded by one or more qualifiers. There are

 three different kinds of qualifier:

 type qualifiers say what kind of thing the id

 name or number refers to. Possible types

 are host, net and port. E.g., `host foo',

 `net 128.3', `port 20'. If there is no type

 qualifier, host is assumed.

 dir qualifiers specify a particular transfer

 direction to and/or from id. Possible

 directions are src, dst, src or dst and src

 and dst. E.g., `src foo', `dst net 128.3',

 `src or dst port ftp-data'. If there is no

 dir qualifier, src or dst is assumed. For

 `null' link layers (i.e. point to point pro

 tocols such as slip) the inbound and out

 bound qualifiers can be used to specify a

 desired direction.

 proto qualifiers restrict the match to a particu

 lar protocol. Possible protos are: ether,

 fddi, tr, ip, ip6, arp, rarp, decnet, tcp

 and udp. E.g., `ether src foo', `arp net

 128.3', `tcp port 21'. If there is no proto

 qualifier, all protocols consistent with the

http://www.tcpdump.org/

 type are assumed. E.g., `src foo' means

 `(ip or arp or rarp) src foo' (except the

 latter is not legal syntax), `net bar' means

 `(ip or arp or rarp) net bar' and `port 53'

 means `(tcp or udp) port 53'.

 [`fddi' is actually an alias for `ether'; the

 parser treats them identically as meaning ``the

 data link level used on the specified network

 interface.'' FDDI headers contain Ethernet-like

 source and destination addresses, and often contain

 Ethernet-like packet types, so you can filter on

 these FDDI fields just as with the analogous Ether

 net fields. FDDI headers also contain other

 fields, but you cannot name them explicitly in a

 filter expression.

 Similarly, `tr' is an alias for `ether'; the previ

 ous paragraph's statements about FDDI headers also

 apply to Token Ring headers.]

 In addition to the above, there are some special

 `primitive' keywords that don't follow the pattern:

 gateway, broadcast, less, greater and arithmetic

 expressions. All of these are described below.

 tives. E.g., `host foo and not port ftp and not

 port ftp-data'. To save typing, identical quali

 fier lists can be omitted. E.g., `tcp dst port ftp

 or ftp-data or domain' is exactly the same as `tcp

 dst port ftp or tcp dst port ftp-data or tcp dst

 port domain'.

 Allowable primitives are:

 dst host host
 True if the IPv4/v6 destination field of the

 packet is host, which may be either an

 address or a name.

 src host host
 True if the IPv4/v6 source field of the

 packet is host.

 host host
 True if either the IPv4/v6 source or desti

 nation of the packet is host. Any of the

 above host expressions can be prepended with

 the keywords, ip, arp, rarp, or ip6 as in:

 ip host host
 which is equivalent to:

 ether proto \ip and host host
 If host is a name with multiple IP

 addresses, each address will be checked for

 a match.

 ether dst ehost
 True if the ethernet destination address is

 ehost. Ehost may be either a name from

 /etc/ethers or a number (see ethers(3N) for

 numeric format).

 ether src ehost
 True if the ethernet source address is

 ehost.

 ether host ehost
 True if either the ethernet source or desti

 nation address is ehost.

 gateway host
 True if the packet used host as a gateway.

 I.e., the ethernet source or destination

 address was host but neither the IP source

 nor the IP destination was host. Host must

 be a name and must be found both by the

 machine's host-name-to-IP-address resolution

 mechanisms (host name file, DNS, NIS, etc.)

 etc.). (An equivalent expression is

 ether host ehost and not host host
 which can be used with either names or num

 bers for host / ehost.) This syntax does

 not work in IPv6-enabled configuration at

 this moment.

 dst net net
 True if the IPv4/v6 destination address of

 the packet has a network number of net. Net
 may be either a name from /etc/networks or a

 network number (see networks(4) for

 details).

 src net net
 True if the IPv4/v6 source address of the

 packet has a network number of net.

 net net
 True if either the IPv4/v6 source or desti

 nation address of the packet has a network

 number of net.

 net net mask netmask

 True if the IP address matches net with the

 specific netmask. May be qualified with src

 or dst. Note that this syntax is not valid

 for IPv6 net.

 net net/len

 True if the IPv4/v6 address matches net with

 a netmask len bits wide. May be qualified

 with src or dst.

 dst port port
 True if the packet is ip/tcp, ip/udp,

 ip6/tcp or ip6/udp and has a destination

 port value of port. The port can be a num

 ber or a name used in /etc/services (see

 tcp(4P) and udp(4P)). If a name is used,

 both the port number and protocol are

 checked. If a number or ambiguous name is

 used, only the port number is checked (e.g.,

 dst port 513 will print both tcp/login traf

 fic and udp/who traffic, and port domain

 will print both tcp/domain and udp/domain

 traffic).

 src port port
 True if the packet has a source port value

 of port.

 True if either the source or destination

 port of the packet is port. Any of the

 above port expressions can be prepended with

 the keywords, tcp or udp, as in:

 tcp src port port
 which matches only tcp packets whose source

 port is port.

 less length

 True if the packet has a length less than or

 equal to length. This is equivalent to:

 len <= length.

 greater length

 True if the packet has a length greater than

 or equal to length. This is equivalent to:

 len >= length.

 ip proto protocol
 True if the packet is an IP packet (see

 ip(4P)) of protocol type protocol. Protocol
 can be a number or one of the names icmp,

 icmp6, igmp, igrp, pim, ah, esp, vrrp, udp,

 or tcp. Note that the identifiers tcp, udp,

 and icmp are also keywords and must be

 escaped via backslash (\), which is \\ in

 the C-shell. Note that this primitive does

 not chase the protocol header chain.

 ip6 proto protocol
 True if the packet is an IPv6 packet of pro

 tocol type protocol. Note that this primi

 tive does not chase the protocol header

 chain.

 ip6 protochain protocol
 True if the packet is IPv6 packet, and con

 tains protocol header with type protocol in

 its protocol header chain. For example,

 ip6 protochain 6

 matches any IPv6 packet with TCP protocol

 header in the protocol header chain. The

 packet may contain, for example, authentica

 tion header, routing header, or hop-by-hop

 option header, between IPv6 header and TCP

 header. The BPF code emitted by this primi

 tive is complex and cannot be optimized by

 BPF optimizer code in tcpdump, so this can

 be somewhat slow.

 ip protochain protocol
 Equivalent to ip6 protochain protocol, but

 True if the packet is an ethernet broadcast

 packet. The ether keyword is optional.

 ip broadcast

 True if the packet is an IP broadcast

 packet. It checks for both the all-zeroes

 and all-ones broadcast conventions, and

 looks up the local subnet mask.

 ether multicast

 True if the packet is an ethernet multicast

 packet. The ether keyword is optional.

 This is shorthand for `ether[0] & 1 != 0'.

 ip multicast

 True if the packet is an IP multicast

 packet.

 ip6 multicast

 True if the packet is an IPv6 multicast

 packet.

 ether proto protocol
 True if the packet is of ether type proto

 col. Protocol can be a number or one of the

 names ip, ip6, arp, rarp, atalk, aarp, dec

 net, sca, lat, mopdl, moprc, iso, stp, ipx,

 or netbeui. Note these identifiers are also

 keywords and must be escaped via backslash

 (\).

 [In the case of FDDI (e.g., `fddi protocol

 arp') and Token Ring (e.g., `tr protocol

 arp'), for most of those protocols, the pro

 tocol identification comes from the 802.2

 Logical Link Control (LLC) header, which is

 usually layered on top of the FDDI or Token

 Ring header.

 When filtering for most protocol identifiers

 on FDDI or Token Ring, tcpdump checks only

 the protocol ID field of an LLC header in

 so-called SNAP format with an Organizational

 Unit Identifier (OUI) of 0x000000, for

 encapsulated Ethernet; it doesn't check

 whether the packet is in SNAP format with an

 OUI of 0x000000.

 The exceptions are iso, for which it checks

 the DSAP (Destination Service Access Point)

 and SSAP (Source Service Access Point)

 fields of the LLC header, stp and netbeui,
 packet with an OUI of 0x080007 and the

 Appletalk etype.

 In the case of Ethernet, tcpdump checks the

 Ethernet type field for most of those proto

 cols; the exceptions are iso, sap, and net
 beui, for which it checks for an 802.3 frame

 and then checks the LLC header as it does

 for FDDI and Token Ring, atalk, where it

 checks both for the Appletalk etype in an

 Ethernet frame and for a SNAP-format packet

 as it does for FDDI and Token Ring, aarp,

 where it checks for the Appletalk ARP etype

 in either an Ethernet frame or an 802.2 SNAP

 frame with an OUI of 0x000000, and ipx,

 where it checks for the IPX etype in an Eth

 ernet frame, the IPX DSAP in the LLC header,

 the 802.3 with no LLC header encapsulation

 of IPX, and the IPX etype in a SNAP frame.]

 decnet src host
 True if the DECNET source address is host,
 which may be an address of the form

 ``10.123'', or a DECNET host name. [DECNET

 host name support is only available on

 Ultrix systems that are configured to run

 DECNET.]

 decnet dst host
 True if the DECNET destination address is

 host.

 decnet host host
 True if either the DECNET source or destina

 tion address is host.

 ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp,

 ipx, netbeui
 Abbreviations for:

 ether proto p

 where p is one of the above protocols.

 lat, moprc, mopdl

 Abbreviations for:

 ether proto p

 where p is one of the above protocols. Note

 that tcpdump does not currently know how to

 parse these protocols.

 vlan [vlan_id]
 True if the packet is an IEEE 802.1Q VLAN

 packet. If [vlan_id] is specified, only

 encountered in expression changes the decod

 ing offsets for the remainder of expression

 on the assumption that the packet is a VLAN

 packet.

 tcp, udp, icmp

 Abbreviations for:

 ip proto p or ip6 proto p

 where p is one of the above protocols.

 iso proto protocol
 True if the packet is an OSI packet of pro

 tocol type protocol. Protocol can be a num

 ber or one of the names clnp, esis, or isis.

 clnp, esis, isis

 Abbreviations for:

 iso proto p

 where p is one of the above protocols. Note

 that tcpdump does an incomplete job of pars

 ing these protocols.

 expr relop expr
 True if the relation holds, where relop is

 one of >, <, >=, <=, =, !=, and expr is an

 arithmetic expression composed of integer

 constants (expressed in standard C syntax),

 the normal binary operators [+, -, *, /, &,

 |], a length operator, and special packet

 data accessors. To access data inside the

 packet, use the following syntax:

 proto [expr : size]

 Proto is one of ether, fddi, tr, ip, arp,

 rarp, tcp, udp, icmp or ip6, and indicates

 the protocol layer for the index operation.

 Note that tcp, udp and other upper-layer

 protocol types only apply to IPv4, not IPv6

 (this will be fixed in the future). The

 byte offset, relative to the indicated pro

 tocol layer, is given by expr. Size is

 optional and indicates the number of bytes

 in the field of interest; it can be either

 one, two, or four, and defaults to one. The

 length operator, indicated by the keyword

 len, gives the length of the packet.

 For example, `ether[0] & 1 != 0' catches all

 multicast traffic. The expression `ip[0] &

 0xf != 5' catches all IP packets with

 options. The expression `ip[6:2] & 0x1fff =

 0' catches only unfragmented datagrams and

 frag zero of fragmented datagrams. This

 always means the first byte of the TCP

 header, and never means the first byte of an

 intervening fragment.

 Some offsets and field values may be

 expressed as names rather than as numeric

 values. The following protocol header field

 offsets are available: icmptype (ICMP type

 field), icmpcode (ICMP code field), and

 tcpflags (TCP flags field).

 The following ICMP type field values are

 available: icmp-echoreply, icmp-unreach,

 icmp-sourcequench, icmp-redirect, icmp-echo,

 icmp-routeradvert, icmp-routersolicit, icmp-

 timxceed, icmp-paramprob, icmp-tstamp, icmp-

 tstampreply, icmp-ireq, icmp-ireqreply,

 icmp-maskreq, icmp-maskreply.

 The following TCP flags field values are

 available: tcp-fin, tcp-syn, tcp-rst, tcp-

 push, tcp-push, tcp-ack, tcp-urg.

 Primitives may be combined using:

 A parenthesized group of primitives and

 operators (parentheses are special to the

 Shell and must be escaped).

 Negation (`!' or `not').

 Concatenation (`&&' or `and').

 Alternation (`||' or `or').

 Negation has highest precedence. Alternation and

 concatenation have equal precedence and associate

 left to right. Note that explicit and tokens, not

 juxtaposition, are now required for concatenation.

 If an identifier is given without a keyword, the

 most recent keyword is assumed. For example,

 not host vs and ace

 is short for

 not host vs and host ace

 which should not be confused with

 not (host vs or ace)

 Expression arguments can be passed to tcpdump as

 either a single argument or as multiple arguments,

 whichever is more convenient. Generally, if the

 expression contains Shell metacharacters, it is

 before being parsed.

EXAMPLES
 To print all packets arriving at or departing from sun

 down:

 tcpdump host sundown

 To print traffic between helios and either hot or ace:

 tcpdump host helios and \(hot or ace \)

 To print all IP packets between ace and any host except

 helios:

 tcpdump ip host ace and not helios

 To print all traffic between local hosts and hosts at

 Berkeley:

 tcpdump net ucb-ether

 To print all ftp traffic through internet gateway snup:

 (note that the expression is quoted to prevent the shell

 from (mis-)interpreting the parentheses):

 tcpdump 'gateway snup and (port ftp or ftp-data)'

 To print traffic neither sourced from nor destined for

 local hosts (if you gateway to one other net, this stuff

 should never make it onto your local net).

 tcpdump ip and not net localnet

 To print the start and end packets (the SYN and FIN pack

 ets) of each TCP conversation that involves a non-local

 host.

 tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'

 To print IP packets longer than 576 bytes sent through

 gateway snup:

 tcpdump 'gateway snup and ip[2:2] > 576'

 To print IP broadcast or multicast packets that were not
 sent via ethernet broadcast or multicast:

 tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'

 To print all ICMP packets that are not echo

 requests/replies (i.e., not ping packets):

 tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'

	MMS Decoder in Ethereal
	Setting up Capture Filters
	MMS Service Decoding and Testing

	IEC GOOSE Decoder
	IEC GSSE Decoder
	IEC SMV Decoder
	IEC GSE Decoder
	Capture Instructions (from www.tcpdump.org)
	EXAMPLES

